Fracture Toughness

Problem
A reaction-bonded silicon nitride has a strength of 300 MPa and a fracture toughness of 3.6 MPa.m^{1/2}. What is the largest-size internal crack that this material can support without fracturing? Given Y = 1

Principles of Fracture Mechanics

• Fracture toughness – measure of a ceramic material’s ability to resist fracture when a crack is present

• Plane strain fracture toughness K_{IC} is defined according to the expression

$$K_{IC} = Y \sigma_f \sqrt{a}$$

K_{IC} = plane strain fracture toughness (MPa√m)
Y = geometric constant (usually ~1)
a = length of external crack or half the length of internal one
σ_f = applied stress

Modulus of Rupture (MOR)

• Ceramic materials are usually tested in bending
 – Sample preparation is easier
 – Significant difference in results for testing in tension, compression and bending

 Flexural strength (modulus of rupture, bend strength, transverse rupture strength) is a material property, defined as the stress in a material just before it yields in a flexure test

Factors affecting strength of ceramics

• Depends on the amount of defects => giving stress concentration

 • All brittle materials contain a certain population of small cracks with different sizes, orientations, geometries

 • Surface cracks
 • Porosity
 • Inclusions
 • Excessive grain sizes

Modulus of Rupture (MOR) Testing

• MOR is calculated as the “maximum fiber stress” on the tension side at failure (strength parameter)

For a rectangular cross-section:

$$\sigma = \frac{3FL}{2bh^2}$$

For a circular cross-section:

$$\sigma = \frac{FL}{\pi r^3}$$

For a three-point bending:

For a four-point bending:

Load

Area

Load

Area
Mechanical properties versus degree of crystallinity

- Crystalline phases are stronger.
- At low T’s, crystalline and non-crystalline phases are brittle.
- At high T’s approaching T_m, non-crystalline phases are ductile.

Effect of Porosity on Mechanical Properties

- Many ceramic materials are manufactured in the solid state because of their high melting points.
- They are milled into powder.
- Then sintered at HT to allow particles to bond together.
- They then contain free space: porosity.

Porosity in Al_2O_3

\[E = E_0(1 - 1.9P + 0.9P^3) \]
Refractories Requirements

- Withstand high temperatures and sudden changes in temperature
- Withstand action of molten slag, glass, hot gases etc
- Withstand load at service conditions
- Withstand abrasive forces
- Conserve heat
- Have low coefficient of thermal expansion
- Will not contaminate the load (material with which it comes into contact with)

Phases in contact with refractories

- **Slag**: Mixture of acidic and basic inorganic oxides like SiO₂, P₂O₅, CaO, MgO, FeO, etc.; temperature varies from 1400°C to 1600°C.

- **Molten steel**: Iron containing C, Si, Mn, P, S and different alloying elements like Cr, Ni, Nb, Mo, W, Mo etc.; temperature 1600°C

- **Gases**: CO, CO₂, N₂, Ar containing solid particles of Fe₂O₃, Fe₃O₄ etc.; temperature 1300°C to 1600°C.

Properties of Refractories

- **Melting point**
 - Temperature at which a ‘test pyramid’ (cone) fails to support its own weight

- **Size/shape**
 - Affects stability of furnace structure
 - Minimize space between construction joints

- **Bulk density**
 - Amount of refractory material within a volume (kg/m³)
 - High bulk density ⇒ high volume stability, heat capacity and resistance to slag penetration

Melting points of some pure compounds used as refractory materials

<table>
<thead>
<tr>
<th>Compounds</th>
<th>Melting point (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MgO (pure sintered)</td>
<td>2800</td>
</tr>
<tr>
<td>CaO (limit)</td>
<td>2571</td>
</tr>
<tr>
<td>SiC pure</td>
<td>2248</td>
</tr>
<tr>
<td>MgO (90-95%)</td>
<td>2193</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>2338</td>
</tr>
<tr>
<td>Al₂O₃ (pure sintered)</td>
<td>2050</td>
</tr>
<tr>
<td>Fireclay</td>
<td>1871</td>
</tr>
<tr>
<td>SiO₂</td>
<td>1715</td>
</tr>
</tbody>
</table>
Properties of Refractories

- **Porosity**
 - Apparent porosity is the volume of open pores as % of total refractory volume
 - Low porosity => less penetration of molten material
 - A large number of small pores is generally preferred to a small number of large pores.

- **Cold crushing strength**
 - Resistance of refractory to crushing (transportation)
 - Indirect relevance to refractory performance

- **Creep at high temperature**
 - Deformation of refractory material under stress at given time and temperature

Properties of Refractories

- **Volume stability, expansion & shrinkage**
 - There can be permanent changes during refractory service life
 - E.g. chemical reaction producing a new material of different specific gravity
 - Occurs at high temperatures

- **Reversible thermal expansion**
 - Phase transformations during heating and cooling

Classification of Refractories

- Refractories can be classified based on **chemical composition** and **physical form**

- Chemical composition is based on reactions to the type of slags
 1. Acid refractories
 2. Basic refractories
 3. Neutral refractories

Properties of Refractories

- **Pyrometric cones**
 - Used in ceramic industries to test ‘refractoriness’ of refractory bricks
 - Each cone is mix of oxides that melt at specific narrow temperature range

- **Pyrometric Cone Equivalent (PCE)**
 - Temperature at which the refractory brick and the cone bend
 - Refractory cannot be used above this temp
 - Refractoriness under load (RUL) more important

Properties of Refractories

- **Thermal conductivity**
 - Depends on chemical and mineralogical compositions and silica content
 - Increases with rising temperature

- **High thermal conductivity desirable??**
 - Heat transfer through brickwork required
 - E.g. recuperators, regenerators

- **Low thermal conductivity desirable??**
 - Heat conservation required (insulating refractories)
 - E.g. heat treatment furnaces
 - Additional insulation conserves heat but increases the hot face temperature and hence a better quality refractory is required

Acid Refractories

- **Uses: under acidic conditions**
 - They are based on SiO₂ and lie on the line between SiO₂ and Al₂O₃,
 - The more Al₂O₃ the material contains the more neutral the material becomes.

- **Examples:** fireclay, quartz, silica, aluminosilicate
SiO$_2$-Al$_2$O$_3$

Basic Refractories
- Uses: under alkaline conditions
- They are based on magnesia (MgO), lime (CaO) and Cr$_2$O$_3$
- High bulk density, high melting point and good resistance to chemical attack.
- Examples: magnesite, chrome-magnesite, dolomite

Neutral Refractories
- Uses: under either acidic or alkaline conditions
- Examples: Carbon (most inert), Alumina, Mullite

Special Refractories
- Silicon carbide, cermets and SiAlON are some examples of special refractory.
- They are used for special applications.

Classification of Refractories
- Physical form can be grouped into two:
 1. Shaped refractories (refractory bricks)
 2. Unshaped refractories (monolithic refractories)

Shaped Refractories
- They have fixed shaped (e.g. bricks)
 - standard shapes
 - special shapes
- They are machine-pressed with high uniformity in properties
- Special shapes are most often hand-molded and are expected to exhibit slight variations in properties.
Unshaped Refractories

- They are without definite form and are only given shape upon application.
- It forms jointless lining and are known as monolithic refractories.
- Types of monolithic refractories:
 - Plastic refractories (ramming mixes), castables refractories, gunning mixes, fettling mixes and mortars

Monolithic Refractories

Castable refractories
- Consists of mixtures of coarse and fine refractory grains together with a bonding agent which is normally based on high alumina cement (HAC)
- Upon heating, binder transforms to form ceramic bond

Plastic refractories
- Mixtures prepared in stiff plastic condition
- Refractories delivered in blocks wrapped in polyethylene
- Blocks sliced into pieces, rammed into place with a rammer

Advantages
- Elimination of joints
- Faster application
- Heat savings
- Better spalling resistance
- Volume stability
- Easy to transport, handle, install
- Reduced downtime for repairs

Manufacture of Refractories

1. Crushing
2. Grinding – < 200 microns
3. Screening – e.g. settling, magnetic separation, chemical methods
4. Storage
5. Mixing
6. Moulding
7. Drying
8. Firing

Fireclay Bricks

- Common in industry: materials available and inexpensive
- Consist of 25 to 45% Al₂O₃ and 50- 80% SiO₂.
- Application areas
 - Iron and steel industry, non-ferrous metallurgy, glass industry, pottery kilns, cement industry
Classification of Fireclay Bricks

<table>
<thead>
<tr>
<th>Brick</th>
<th>%SiO₂</th>
<th>%Al₂O₃</th>
<th>Other constituents</th>
<th>PCE (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Super duty</td>
<td>49-53</td>
<td>40-44</td>
<td>5-7</td>
<td>1746-1760</td>
</tr>
<tr>
<td>High duty</td>
<td>50-80</td>
<td>35-40</td>
<td>5-9</td>
<td>1690-1746</td>
</tr>
<tr>
<td>Medium duty</td>
<td>60-70</td>
<td>26-36</td>
<td>5-9</td>
<td>1635-1690</td>
</tr>
<tr>
<td>Low duty</td>
<td>60-70</td>
<td>23-33</td>
<td>6-10</td>
<td>1521-1593</td>
</tr>
</tbody>
</table>

High Alumina Refractories

- Al₂O₃ varies from 45 to 95%.
- Commonly used refractory mullite (70 – 85% Al₂O₃).
- High alumina => high refractoriness

- Uses: BF, cement and lime rotary kilns, electric arc furnace roofs, ladle, glass making furnaces

Insulating Materials

- Material with low heat conductivity: keeps furnace surface temperature low.
- Achieved by introduction of a high degree of porosity.
- How?

Selecting the Right Refractory

Selection criteria

- Type of furnace
- Type of metal charge
- Presence of slag
- Area of application
- Working temperatures
- Extent of abrasion and impact
- Structural load of furnace
- Stress due to temp gradient & fluctuations
- Chemical compatibility
- Heat transfer & fuel conservation
- Costs

Corrosion of Refractories

- Refractories are used in many cases within high temperature corrosive environment.
- Changes in the state of the environment (as “redox” conditions or oxygen “activity”) influence the chemical reactions
- Along with chemical reactions during corrosion, physical changes occur that may be accelerated by the corrosion process.

Corrosion of Refractories

A refractory wear by loss of thickness and mass from the exposed face of the refractory as a consequence of chemical attack by a corroding fluid in a process in which the refractory and the corroding fluid react approaching chemical equilibrium in the zone of contact between the refractory and the fluid

1. Phenomenological approach – chemical and physical process
2. Use of equilibrium phase diagram
First Fundamental Principle on Refractory and Slag Compatibility

- “Acid” refractories tend to resist “acid” slags better than “basic” slags.
- “Basic” refractories tend to resist “basic” slags better than “acid” slags.

Acidity and Basicity in Solution Chemistry at RT

Acidity and Basicity in Corrosion Chemistry at ET

Second Fundamental Principle on Porosity and Corrosion Rates

- Most refractories contain voids or porosity.
 - Porosity may be open or closed
- No porosity => corrosion reaction limited only to the **hot face**
- Porosity causes the corrosive media to penetrate the refractory causing destructive reactions behind the hot face.
- Slag corrosion rates increase linearly with the percentage of apparent porosity within the refractory

Implications in ceramic processing??

Third Fundamental Principle on Reactions and Temperature Gradients

- Very steep temperature gradient => very little penetration of slag
 - corrosion reactions restricted to the slag/refractory interface.
- Steep gradients are seen in thin-wall refractory linings
 - E.g. boilers

Summary

- Slag corrosion by liquids occurs whenever a threshold temperature is exceeded which is usually when melting occurs between the refractory and the slag.
- Corrosion results in solution of refractory constituents in the liquid phase resulting in loss of thickness of the refractory lining.
- The rate of corrosion is dependent on the chemical environment and on the hot face temperature of the refractory.

Summary

- Corrosion is primarily a chemical process, and the potential for corrosion can be estimated by reference to phase equilibrium diagrams.
- These diagrams can allow prediction of the “threshold temperature” for liquid formation.
- Microscopic techniques allow identification of particular corrosion reactions.